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Nonlinear screening in large two-dimensional Coulomb clusters
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The distortion due to a fixed point impurity with variable charge placed in the center of a classical harmoni-
cally confined two-dimension&RD) large Coulomb cluster is studied. We find that the net topological charge
(N_-N,) of the system is always equal to six independent of the position and charge of the impurity. In
comparison with a 2D cluster without impurity charge, only the breathing mode remains unchanged. The
screening length is found to be a highly nonlinear function of the impurity charge. For values of the impurity
charge smaller than the charge of the other particles, the system has almost the same screening strength. When
the impurity charge is larger, the screening length is strongly enhanced. This result can be explained by the
competition between the different forces active in the system.
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I. INTRODUCTION and/or charge can be present. It will be very interesting to
know the general role of the impurity potential on the or-
Wigner-like ordered systems have been the subject of indered(lattice) structure. How such an impurity potential af-
tense interest over the past few decades. Systems consistifigts essential characteristics of a system such as, the topo-
of a finite number of particles with repulsive interparticle logical charge, the density of stat¢®OS) of the normal
interaction which are kept together by an external confinemodes, and the normal modes of the system, requires exten-
ment potential have been realized recently. Typical experisive studies.
mental realizations of such 2D systems include electrons on Recently, the influence of a single mobile defect particle
the surface of liquid heliunjl], electrons in quantum dots on the structure of a small classical 2D cluster was investi-
[2], colloidal suspensiong3] and confined plasma crystals gated[16], which explained recent experimental results of
[4]. the conf_igurations of a system of rotating m_agnetic d[sks
Colloids and dust particles are sufficiently large that theTheoretical work on the structure of classical clusters con-
particle movement can directly be observed by an opticafiSting of two-species of charged particles with the same
microscope. These systems are extensively studied to undéRass was reported recently7], where it was found that the

stand the freezing and melting: and the fundamental dynamigP€cies with the largest charge move towards the outer edge

processes, i.e., phonon propagation and normal modes. A3 the system. Recently, the analog quantum systalso

interesting feature in such finite size systems is the appeaF_alledquantum dotwas studied in Refg18,19 in the case

. . . . .~ ~of a small number of electrons. Interesting, reentering of the
T e ey S0l I Winercysal state was precit ] s functon o
P P P ' y %agnetic field. Very recently, nonlinear quantum screening

interparticle interactions are in most cases precisely knowr-]q 2D electron gases was also investigated in R29] by
and easily controlled by the experiment. Much experimenta, sing the density functional theory method '

[5-7] and theoretical work8-13 was devoted to the study —"yhis work, we study the screening of a single fixed

3\];. those topcl)logijcal defclectsl in_ an f.in_finitef 2D CI""S’Sicalimpurity (defecy with variable charge in a large 2D classical
igner crystal and recently also in a finite size system. — ¢q;1omp system which is confined by a circular parabolic

. Clashsical poir}tlch_arges lin a 2D infinite ezlar;/\e}hcrysthalIizepotentia|_ This case is essentially different from the previous
Into a hexagonal lattice at low temperatuf@d]. When the o4 ,qieq systeni16]: (1) The impurity is immobile, i.e., has

particlgs are Confif‘ed by an eXtemal parapolic pote.ntialan infinite mass, an@2) we consider large systems. Also
there is a competition betwgen the mterpart!cle potential 1 nlike the study of Ref[17] this impurity can have an arbi-
form the bulk hexagonal lattice and the ringlike structure attrary charge. In contract to Refil6,17] we will also inves-

the edge im_ppsed by the circular confinement_ p°tef‘_ﬁﬂ'- tigate the topological charge and the normal modes of the
In the transition region defects appear as dislocations an%,

disclinations at the six corners of the hexagonal-shaped inne

domain in the specific case of pure Coulomb interacticsj.
However, in real experiments clusters are not alway

clean, impurities and/or defect particles with deviating ma

The present paper is organized as follows. In Sec. Il, the
model system and the numerical approach are described.
SSection |1l is devoted to the ground state configuration and
S‘°t0po|ogical defects. The normal modes are presented in Sec.
IV. In Sec. V, the nonlinear screening of the impurity charge
in these clusters are discussed. Our conclusions are given in
*Electronic address: francois.peeters@ua.ac.be Sec. VI.
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FIG. 1. The displacement of the particles for different values of the impurity clgrd@e impurity is situated in the center and its
position is indicated by the solid dot. The arrows show the direction and length of the particles’ displacement.

Il. NUMERICAL APPROACH First, the ground state of a cluster with equal charges with
one impurity fixed in the center is obtained. The displace-

T_he Hgmiltonian of a 2D sy;tem d\ﬂ eq.uaIIy. charg_ed ment of the particles due to the presence of the impurity
particles in the presence of a single impurity with arbitrary\yhich, is Jocated in the center of the cluster is shown in Fig.

charge placed in a parabolic confinement potential and inter; o, N=100 particles and different values of the chaggaf

acting through pure Coulomb interaction is given by the impurity. The vectors show the direction and length of
N N N the displacement of the particles as a consequence of the
1 el 1 @ : : e : .
H= “mori+ — = q (1) introduction of the impurity. From Fig. 1, we notice that
22 O e R-n emIfi-F when the impurity charggj<1, only the center particles

which are very close to the impurity are mainly displaced, in
wherem is the mass of the mobile particles, the radial  spite of the long range Coulomb interaction between the par-
confinement frequency; the dielectric constant of the me- ticles. In fact, a very small screening length was observed in
dium the particles are moving ie,the particle chargeg the  this case. This will be discussed in more details in the next
impurity charge located at,, andr;=(x;,y;) the position of  section. For larger values of the impurity charge, more par-
the i particle with r;=|r;|, where the third term in Eql) ticles are influenced. As can be seen in Fig. 1, the particles
corresponds to the interaction between the mobile identicaindergo vortex-like movements. This is a consequence of the
particles and the single fixed impurity with charge cjrpular c.onfinement pote.ntial which keeps the particles in a
We can write the Hamiltonian in dimensionless form if we finite region. Such a motion does not lead to any compres-
express the coordinates and energy in the following unit§ion and guarantees the same density. For large values of the
[15]: ro=(€/ e/ a)*3, Ey=(€?/£)23at3, with a=mw§/2. The Impurity charge the distortion in the lattice is larger and it
propagates further away from the center of the cluster.
Next we resort to the Voronoi constructif?3] in order to

dimensionless Hamiltonian is given by

N Ny N q investigate the ordering of the particles and to reveal the
H=D 2+ >, ——+ > ——. (2)  topological nature of the particles arrangement. A detailed
i=1 = Iri = rJ| =1 Ifi = rq| study of the topological defects in a confined 2D Coulomb

cluster, in the absence of the impurity, was previously re-
ported in Ref[13]. These defects appear as a consequence of
the adjustment of a triangular lattice to a circular region.
JHowever, when an impurity charge is present, and depending
on its value, the number of defects increases.
In Fig. 2 we show the Voronoi constructions of the
ground-state configuration of a cluster witk=100 particles
&H and with an impurity charge of variable value fixed at the
©) point (0, 0). The quantityN_ (indicated by “-") means an
orientational defect with fivefold coordination number, while
where{r" ., a=x,y; i=1,... N} is the position of the par- the quantityN, (indicated by “+”) means an orientational
ticles in the ground state configuration. The eigenfrequenciedefect with seven fold coordination numbghe number of
in this paper will be expressed in units =\2w,. sides of the polygon around the particles is nothing else then
the coordination numbgrIn the absence of the impurity
charge, the ground state configuration of the system With
=100 particles presents the minimum number of defects, i.e.,
six, which is equal to the net topological charge. In addition,
In order to investigate the influence of the impurity, we all topological defects are located at the transition region
consider clusters which are large enough to show a hexagevhich is between the central hexagonal structure and the
nal lattice structure in the center. This is realized startingouter rings.
from aroundN=100 particles, although larger systems will ~When the system has one identical impurity chatge
also be simulated. =1) at the center, the number of defects is still equal to six,

To find the thermodynamic equilibrium configurations, we
employed the Newton optimization technique after the stan
dard Monte Carlo(MC) routine [21]. This procedure was
outlined and compared with the standard MC technique i
Ref.[22]. The eigenmode frequencies are obtained from th
square root of the eigenvalues of the dynamical md2%

H = —
apiij '
APAEAYY Fai™ o

Ill. GROUND STATE CONFIGURATIONS
AND TOPOLOGICAL DEFECTS
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FIG. 4. Vector plot of the lowest nonzero eigenfrequency for the
cluster withN=100 particles for different values of the impurity
chargeq.

the impurity’s position is moved away from the center of the
FIG. 2. The Voronoi structure where the defe(its., disclina-  System. As can be observed, the net topological chirge
tions) are indicated by “2” for an 8-fold, “+” for a 7-fold and by ~ —N.,. of the system, in spite of the different values and posi-
“—" for a 5-fold coordination number. tions of the impurity charge is always equal to six.
) » ) These results are in agreement with the Euler thedBm
and all of them are located in the transition region of theyhich is based on the circular symmetry of the confinement

cluster. For larger values of the impurity charge, topologicalyyential. It is clear that the presence of the impurity does not
defects start to appear in the center region of the cluster, angyange the net topological charge.

the lattice distortion gets bigger. Because a large impurity
charge will strongly repel the neighboring particles, an IV. NORMAL MODES
empty space will appear in the center region. As a conse-

some defects near the circle can have an eightfold Coordi”a['ffusters[
number(indicated by “-2"), which does not happen in 2D
clusters in the absence of the impurity charge. However, w
want to stress that for all values of the impurity charge, th
net topological chargdl_—N, is always equal to six.

Another interesting phenomena is that the total number o

22]. Figure 4 shows some examples of these lowest
nonzero frequencyLNF) modes forN=100 particles in the
resence of an impurity charge Notice that forq<5, a
ortex-antivortex excitation still corresponds with the LNF,
hile for larger values of the impurity chargg=5) the

NF mode corresponds to a circular motion around the im-

defects (.N‘+N+) first increases W.'th Increasing Impurity purity and concomitant smaller local circular motions near
charge till g=2.4. Further increasing the impurity charge the edge

leads to a decrease of the total number of defects. This can For a parabolic confinement, it is well known that there
be explained together with the nonlinear screening behaviogl i

in th on by th ition b he diff re three eigenfrequencies which are independent [@2]:
In the next section by the competition between the different _o |5 ang |6, which correspond to the rotation of the
forces active in the system.

; . . system as a whole, the center of méssn) mode and the
In Fig. 3 we p.resenf[ the.Voron0| construction for. the breathing mod€BM), respectively. The BM mode was re-
ground state configurations in the cases of two particula

. . ) o Eently measured experimental¥4,25. In the system with a
values of the impurity charge, i.&=1 andq=2. In addition central impurity, the rotation of the system as a whole does

not change, because the symmetry of the system is not bro-
ken. The c.m. mode is destroyed by this fixed impurity and
the new mode will go around the impurity in the center, so it
can no longer be called a c.m. mode.

However, the BM mode witlw/ o’ =6 still survives and
its value does not depend on the charge of the impurity. This
can also be obtained analytically. From 2}, the Hamilton
equation of motion yields

_IH_

f=01.0 =20 n=60 fa=40) Uyi = =
IX;

N
PR B TR O I
Iri—rj 1 lri—rg
FIG. 3. The same as Fig. 2 but where now the impurity charge is ) o . .
displaced from its central location. The upglewer) row of figures ~ Here the impurity is fixed in the center, s§=(x,,y,)
corresponds to an impurity with singldoublg charge and results =(0,0). With this result, one obtained for the mean square

are given for different positions of the impurify, radiusR?=3)(x?+y?), then
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FIG. 6. Density of phonon states for clusters wiNk500 par-
ticles in the presence of a central impurity for different values of the
impurity chargeq.
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FIG. 5. The breathing modes for some particular values of thdatively its overall shearlike and compressionlike character
impurity chargeq for the clusters wittiN=100 and\N=500 particles. ~ when an impurity is present even when the impurity charge

In all cases, the BM has the same frequendy: 6. is increased.
d’R? , 2
g - BRI HET, (5) V. NONLINEAR SCREENING

Screening of the impurity charge is a fundamental prop-
with T:zi(xi2+yi2) the total kinetic energy. So we see that theerty of a gas of charge carriers. Such a screening is charac-
breathing mode still survives with frequeng$ for the sys- terized by the displacement of the carriers when an impurity
tem with a fixed central impurity. is placed in a uniform gas of carriefa8].

We plot in Fig. 5 several typical cases for the breathing We investigate the behavior of the screening length as
mode forN=100 andN=500 particles in the case the impu- function of the charge of the impurity for a large 2D cluster
rity is located in the center of the confinement potential. Butwith N=500 charged particles. In order to quantify the influ-
when the impurity is not in the center, the BM is strongly ence of the impurity charge on the system, we will consider

modified and its frequency is different fraf@. here an average deviation of the particles’ position before
The density of state§DOS) of the normal modes
(phonong, in the absence of the impurity, was investigated N=500

before[22]. This is obtained by a summation of the energy ¢ g915F - : I - ' ]
levels within some small energy region. It shows that all q=0.2
large clusters have two clear broad maxima which is in quali-
tative agreement with the case for an infinite sysfédj. We 0.0010}
compare the DOS for a large system with=500 particles
with the situation for a fixed central impurity with two dif-
ferent values of its charge, i.&j=1, 2.6. Here a larger sys- 0.0005;
tem with N=500 particles is considered and we ta&e

= wmay 20 as the frequency interval, wheig,,, is the maxi-
mum eigenfrequency. In Fig. 6, one can see that the system
DOS does not change too much in these two cases with o
without the fixed impurity. As we know, a finite confined
cluster has compressionlike and shearlike modes. The com
pressional and shearlike properties can be extracted from th
divergence and rotor of the velocity field, respectively. In
this paper, we will associate a single number to the shearlike g.0005}
and compressionlike character of the different modes by cal-
culating the spatial average of the square of the divergenct

Vv and the rotofV X v), of the velocity field, following the
approach of Refq22,26,27.

We plotted in Fig. 7 the divergenag,(k) and rotor; (k)
as a function of the excitation frequency f8=500 particles FIG. 7. Divergenceyy(k) (solid dotg and rotor (k) (open
for different values of the charge of the impurity. One candots as a function of the excitation frequency fd=500 particles
see from this picture that the system does not change qualier different values of the impurity charge

,0.0000+
0.0015} -

0.0010

0.0000 -
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FIG. 8. The deviatio\ of the radial position of the particles as
function of r for different values of the impurity chargg for a
system consisting dfl=500 particles. The inset shousin a loga-
rithmic scale.

FIG. 9. The screening length as a function of the impurity
chargeq for clusters consisting d=500 particles. The inset shows
the g dependence of the radial displacement at large distances from
the impurity. The dotted lines show the extrapolated small and large
g behavior.
and after the impurity charge is placed in the system. To do
so, we initially define, for each particle, the displacement duevith a ro—q linear dependence fay<0.5 andg>1, and a
to the presence of the impurity charge=|rafte—fPeforg, transition region for 0.5xq<1.

The system is divided into 25 concentric rings with a  This nonlinear screening behavior can be understood as
certain width each containing 20 particles. In every iirem  follows. From Fig. 1, we know that for small values wtill
average displacement is calculatdg=>A;/20 where the ¢<1.2 the particles near the central region have much larger
summation sums over the particles in ringIn this way we  displacements than the particles near the edge, which are less
obtain the average deviatiah as a function of the distance influenced by the external impurity charge. In this case the
in the radial direction from the center of the cluster. system is strongly screened. By increasing the impurity

In Fig. 8, we presen as a function of the distance along chargeq, the radius of the system grows lineaflsee Fig.
the radial directionr, for different values of the impurity 10(b)]. However, the displacement of the particles is not ho-
chargeq in a cluster withN=500 particles. The inset shows mogeneous in the clusters. The maximum of the screening
the same plot, but in a logarithmic scale. As can be observed, , , ' .
the edge particles are much less affected by the impurity 82.2} N=500 (a)
charge than the central particles. The interaction between the
impurity and the particles clearly presents two different re- 820
gimes, which are related to the value of the impurity charge.
Whenq<1, the quantityA becomes almost zero at the ex-
tremity of the cluster, indicating that the interaction is
strongly screened. On the other hand, whenl, the quan-
tity A is considerable larger even at the edge of the cluster. 81.4}
Notice also that the value df at the border of the system
seems to saturate whey> 2.

We fit these deviation curves(r) using the functiorii.e.,
Yukawa potential formation

81.8}

Energy

816}

81.2},

7.580

Ar; = a(e™Mr) + 1, (6)
7.575}
where \ is the screening lengthy a constant and; is a
measure of the expansion of the system as a whole. The
results for the screening length as a function of the impurity
chargeq are shown in Fig. 9. There is a clear nonlinear
relationship between the screening lengtand the impurity 7565
chargeg. The screening length is almost constantder 0.5,
it rapidly increases with increasing value of the impurity 0o o5 10 15 20 25 30
charge, in the interval 05q<1. For 1.0sg<1.2, the q

screening length reaches its maximum value. Wherl.2,

the screening parameter decreases slowly with increasing FIG. 10. The energya) and radiugb) of the system as a func-
value of the impurity charge. In the inset of Fig. 9, we noticetion of the impurity chargey. The inset of(a) shows the energy of
that thery—q dependence exhibits three different regimesthe system as a function of.

7.5701

radius of system

051807-5



KONG et al. PHYSICAL REVIEW E 70, 051807(2004

length is reached fog=1.0-1.2. In this case the difference All interactions are pure Coulombic. The ground-state con-
between the displacements of particles around the center affiguration is obtained through the Monte Carlo simulation
the edge is largest. At the same time, more defects will aptechnique. The presence of an impurity charge in the system
pear in the system. Further increasing the i_mpurity chqr_ge does not modify the net topological chargé_-N,) of the
leads more and more to a homogenous displacement in a&l;stem, which is always equal to six. In comparison with a
regions(i.e., a central hole is created by the impurity as ispp cjuster without impurity charge, only the breathing mode
clearly seen in Fig. 4 and)5leading to a decrease of the emains unchanged if the impurity is located in the center of
screening length. the confinement potential. The DOS and the shearlike or

The nonlinear behavior of the screening length is a congqmpressionlike character of normal modes of the system do

sequence of the balance among the effect of the impurity,,i change considerably by this impurity as well. A clear

repulsive force, the interaction betwgen the chargeq particleSqniinear relationship between the screening lengtand

of the system, and the circular confln_ement potential. the impurity charge is found. For values of the impurity
We plot the energy and outer radius of the system as @harge smaller than the charge of the other particles, the

function of the impurity charge in Fig. 10. In the inset of = qygtem has almost a screening strength independent on the

Fig. 10a), the energy of the system as a functionrgfis  charge of the impurity. For larger values of the impurity

shown. Notice that both the energy and the radius of thepare  the system exhibits a clear nonlinear screening

system present an almost linear dependence on the impurifyn ik This result can be explained by the competition be-
charge. The size of the system linearly increases with thg,can the different forces active in the system.
impurity charge[Fig.1Qb)]. Notice that the outer radius and

the uniform increment, [see Eq(6)] do not have a one-to-
one relation because of the first term on the right hand side
of Eg. (6) which is different from zero at the edge of the
system. From the inset of Fig. &), we notice two regimes This work was supported by the Flemish Science Foun-
with a different linearE-ry dependence. The transition re- dation (FWO-VI), the Belgian Science Policy, the “Onder-
gion occurs fory=0.01 which corresponds tp=1 and this  zoeksraad van de Universiteit AntwerpefGOA), and the
is just the region whera is maximal. EU Research Training Network on “Surface Electrons on
Mesoscopic Structures.” B.P. and A.V. were supported by the
VI. CONCLUSIONS FWO-VI. G.A.F. was supported by the Brazilian National
We investigated 2D large clusters consisting of identicalResearch CouncilCNPg. The authors are very grateful to
charged classical particles having a single probe impurityDr. L. R. E. Cabral for helpful discussions.
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