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The distortion due to a fixed point impurity with variable charge placed in the center of a classical harmoni-
cally confined two-dimensional(2D) large Coulomb cluster is studied. We find that the net topological charge
sN−−N+d of the system is always equal to six independent of the position and charge of the impurity. In
comparison with a 2D cluster without impurity charge, only the breathing mode remains unchanged. The
screening length is found to be a highly nonlinear function of the impurity charge. For values of the impurity
charge smaller than the charge of the other particles, the system has almost the same screening strength. When
the impurity charge is larger, the screening length is strongly enhanced. This result can be explained by the
competition between the different forces active in the system.
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I. INTRODUCTION

Wigner-like ordered systems have been the subject of in-
tense interest over the past few decades. Systems consisting
of a finite number of particles with repulsive interparticle
interaction which are kept together by an external confine-
ment potential have been realized recently. Typical experi-
mental realizations of such 2D systems include electrons on
the surface of liquid helium[1], electrons in quantum dots
[2], colloidal suspensions[3] and confined plasma crystals
[4].

Colloids and dust particles are sufficiently large that the
particle movement can directly be observed by an optical
microscope. These systems are extensively studied to under-
stand the freezing and melting; and the fundamental dynamic
processes, i.e., phonon propagation and normal modes. An
interesting feature in such finite size systems is the appear-
ance of topological defects. Unlike ordinary solids which
have complicated interparticle potentials, in such systems the
interparticle interactions are in most cases precisely known
and easily controlled by the experiment. Much experimental
[5–7] and theoretical work[8–13] was devoted to the study
of those topological defects in an infinite 2D classical
Wigner crystal and recently also in a finite size system.

Classical point charges in a 2D infinite plane crystallize
into a hexagonal lattice at low temperatures[14]. When the
particles are confined by an external parabolic potential,
there is a competition between the interparticle potential to
form the bulk hexagonal lattice and the ringlike structure at
the edge imposed by the circular confinement potential[15].
In the transition region defects appear as dislocations and
disclinations at the six corners of the hexagonal-shaped inner
domain in the specific case of pure Coulomb interaction[13].

However, in real experiments clusters are not always
clean, impurities and/or defect particles with deviating mass

and/or charge can be present. It will be very interesting to
know the general role of the impurity potential on the or-
dered(lattice) structure. How such an impurity potential af-
fects essential characteristics of a system such as, the topo-
logical charge, the density of states(DOS) of the normal
modes, and the normal modes of the system, requires exten-
sive studies.

Recently, the influence of a single mobile defect particle
on the structure of a small classical 2D cluster was investi-
gated [16], which explained recent experimental results of
the configurations of a system of rotating magnetic disks[6].
Theoretical work on the structure of classical clusters con-
sisting of two-species of charged particles with the same
mass was reported recently[17], where it was found that the
species with the largest charge move towards the outer edge
of the system. Recently, the analog quantum system(also
calledquantum dot) was studied in Refs.[18,19] in the case
of a small number of electrons. Interesting, reentering of the
Wigner crystal state was predicted[18] as a function of the
magnetic field. Very recently, nonlinear quantum screening
in 2D electron gases was also investigated in Ref.[20] by
using the density functional theory method.

In this work, we study the screening of a single fixed
impurity (defect) with variable charge in a large 2D classical
Coulomb system which is confined by a circular parabolic
potential. This case is essentially different from the previous
studied system[16]: (1) The impurity is immobile, i.e., has
an infinite mass, and(2) we consider large systems. Also
unlike the study of Ref.[17] this impurity can have an arbi-
trary charge. In contract to Refs.[16,17] we will also inves-
tigate the topological charge and the normal modes of the
system.

The present paper is organized as follows. In Sec. II, the
model system and the numerical approach are described.
Section III is devoted to the ground state configuration and
topological defects. The normal modes are presented in Sec.
IV. In Sec. V, the nonlinear screening of the impurity charge
in these clusters are discussed. Our conclusions are given in
Sec. VI.*Electronic address: francois.peeters@ua.ac.be
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II. NUMERICAL APPROACH

The Hamiltonian of a 2D system ofN equally charged
particles in the presence of a single impurity with arbitrary
charge placed in a parabolic confinement potential and inter-
acting through pure Coulomb interaction is given by

H = o
i=1

N
1

2
mv0

2r i
2 +

e2

«
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i. j
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+

e2

«
o
i=1

N
q

urWi − rWqu
, s1d

wherem is the mass of the mobile particles,v0 the radial
confinement frequency,« the dielectric constant of the me-
dium the particles are moving in,e the particle charge,q the
impurity charge located atrWq, and rWi =sxi ,yid the position of
the i particle with r i ;urWiu, where the third term in Eq.(1)
corresponds to the interaction between the mobile identical
particles and the single fixed impurity with chargeq.

We can write the Hamiltonian in dimensionless form if we
express the coordinates and energy in the following units
[15]: r0=se2/« /ad1/3, E0=se2/«d2/3a1/3, with a=mv0

2/2. The
dimensionless Hamiltonian is given by
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To find the thermodynamic equilibrium configurations, we
employed the Newton optimization technique after the stan-
dard Monte Carlo(MC) routine [21]. This procedure was
outlined and compared with the standard MC technique in
Ref. [22]. The eigenmode frequencies are obtained from the
square root of the eigenvalues of the dynamical matrix[22]

Hab,i j = U ]2H

] ra,i ] rb,j
U

ra,i=r
a,i
n

, s3d

where hra,i
n , a=x,y; i =1, . . . ,Nj is the position of the par-

ticles in the ground state configuration. The eigenfrequencies
in this paper will be expressed in unitsv8=Î2v0.

III. GROUND STATE CONFIGURATIONS
AND TOPOLOGICAL DEFECTS

In order to investigate the influence of the impurity, we
consider clusters which are large enough to show a hexago-
nal lattice structure in the center. This is realized starting
from aroundN=100 particles, although larger systems will
also be simulated.

First, the ground state of a cluster with equal charges with
one impurity fixed in the center is obtained. The displace-
ment of the particles due to the presence of the impurity
which is located in the center of the cluster is shown in Fig.
1 for N=100 particles and different values of the chargeq of
the impurity. The vectors show the direction and length of
the displacement of the particles as a consequence of the
introduction of the impurity. From Fig. 1, we notice that
when the impurity chargeqø1, only the center particles
which are very close to the impurity are mainly displaced, in
spite of the long range Coulomb interaction between the par-
ticles. In fact, a very small screening length was observed in
this case. This will be discussed in more details in the next
section. For larger values of the impurity charge, more par-
ticles are influenced. As can be seen in Fig. 1, the particles
undergo vortex-like movements. This is a consequence of the
circular confinement potential which keeps the particles in a
finite region. Such a motion does not lead to any compres-
sion and guarantees the same density. For large values of the
impurity charge the distortion in the lattice is larger and it
propagates further away from the center of the cluster.

Next we resort to the Voronoi construction[23] in order to
investigate the ordering of the particles and to reveal the
topological nature of the particles arrangement. A detailed
study of the topological defects in a confined 2D Coulomb
cluster, in the absence of the impurity, was previously re-
ported in Ref.[13]. These defects appear as a consequence of
the adjustment of a triangular lattice to a circular region.
However, when an impurity charge is present, and depending
on its value, the number of defects increases.

In Fig. 2 we show the Voronoi constructions of the
ground-state configuration of a cluster withN=100 particles
and with an impurity charge of variable value fixed at the
point (0, 0). The quantityN− (indicated by “2” ) means an
orientational defect with fivefold coordination number, while
the quantityN+ (indicated by “1” ) means an orientational
defect with seven fold coordination number(the number of
sides of the polygon around the particles is nothing else then
the coordination number). In the absence of the impurity
charge, the ground state configuration of the system withN
=100 particles presents the minimum number of defects, i.e.,
six, which is equal to the net topological charge. In addition,
all topological defects are located at the transition region
which is between the central hexagonal structure and the
outer rings.

When the system has one identical impurity chargesq
=1d at the center, the number of defects is still equal to six,

FIG. 1. The displacement of the particles for different values of the impurity chargeq. The impurity is situated in the center and its
position is indicated by the solid dot. The arrows show the direction and length of the particles’ displacement.
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and all of them are located in the transition region of the
cluster. For larger values of the impurity charge, topological
defects start to appear in the center region of the cluster, and
the lattice distortion gets bigger. Because a large impurity
charge will strongly repel the neighboring particles, an
empty space will appear in the center region. As a conse-
quence the hexagonal lattice structure is strongly distorted
and more defects will appear around this circle. Notice that
some defects near the circle can have an eightfold coordinate
number(indicated by “12”), which does not happen in 2D
clusters in the absence of the impurity charge. However, we
want to stress that for all values of the impurity charge, the
net topological chargeN−−N+ is always equal to six.

Another interesting phenomena is that the total number of
defects sN−+N+d first increases with increasing impurity
charge till q.2.4. Further increasing the impurity charge
leads to a decrease of the total number of defects. This can
be explained together with the nonlinear screening behavior
in the next section by the competition between the different
forces active in the system.

In Fig. 3 we present the Voronoi construction for the
ground state configurations in the cases of two particular
values of the impurity charge, i.e.,q=1 andq=2. In addition

the impurity’s position is moved away from the center of the
system. As can be observed, the net topological chargeN−
−N+ of the system, in spite of the different values and posi-
tions of the impurity charge is always equal to six.

These results are in agreement with the Euler theorem[8],
which is based on the circular symmetry of the confinement
potential. It is clear that the presence of the impurity does not
change the net topological charge.

IV. NORMAL MODES

For systems without impurity, it is known that the lowest
nonzero excitation corresponds with an intershell rotation for
small clusters and with a vortex-antivotex motion for large
clusters[22]. Figure 4 shows some examples of these lowest
nonzero frequency(LNF) modes forN=100 particles in the
presence of an impurity chargeq. Notice that forq,5, a
vortex-antivortex excitation still corresponds with the LNF,
while for larger values of the impurity chargesqù5d the
LNF mode corresponds to a circular motion around the im-
purity and concomitant smaller local circular motions near
the edge.

For a parabolic confinement, it is well known that there
are three eigenfrequencies which are independent ofN [22]:
v=0,Î2 and Î6, which correspond to the rotation of the
system as a whole, the center of mass(c.m.) mode and the
breathing mode(BM), respectively. The BM mode was re-
cently measured experimentally[24,25]. In the system with a
central impurity, the rotation of the system as a whole does
not change, because the symmetry of the system is not bro-
ken. The c.m. mode is destroyed by this fixed impurity and
the new mode will go around the impurity in the center, so it
can no longer be called a c.m. mode.

However, the BM mode withv /v8=Î6 still survives and
its value does not depend on the charge of the impurity. This
can also be obtained analytically. From Eq.(2), the Hamilton
equation of motion yields

v̇xi = −
] H

] xi
= − 2xi +

xi − xj

ur i − r ju3
+ qo

iÞ1

N
xi − xq

ur i − r qu3
. s4d

Here the impurity is fixed in the center, sorWq;sxq,yqd
=s0,0d. With this result, one obtained for the mean square
radiusR2=o1

Nsxi
2+yi

2d, then

FIG. 2. The Voronoi structure where the defects(i.e., disclina-
tions) are indicated by “21” for an 8-fold, “1” for a 7-fold and by
“2” for a 5-fold coordination number.

FIG. 3. The same as Fig. 2 but where now the impurity charge is
displaced from its central location. The upper(lower) row of figures
corresponds to an impurity with single(double) charge and results
are given for different positions of the impurityrWq.

FIG. 4. Vector plot of the lowest nonzero eigenfrequency for the
cluster with N=100 particles for different values of the impurity
chargeq.
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with T=oisẋi
2+ ẏi

2d the total kinetic energy. So we see that the
breathing mode still survives with frequencyÎ6 for the sys-
tem with a fixed central impurity.

We plot in Fig. 5 several typical cases for the breathing
mode forN=100 andN=500 particles in the case the impu-
rity is located in the center of the confinement potential. But
when the impurity is not in the center, the BM is strongly
modified and its frequency is different fromÎ6.

The density of states(DOS) of the normal modes
(phonons), in the absence of the impurity, was investigated
before[22]. This is obtained by a summation of the energy
levels within some small energy region. It shows that all
large clusters have two clear broad maxima which is in quali-
tative agreement with the case for an infinite system[14]. We
compare the DOS for a large system withN=500 particles
with the situation for a fixed central impurity with two dif-
ferent values of its charge, i.e.,q=1, 2.6. Here a larger sys-
tem with N=500 particles is considered and we takedv
=vmax/20 as the frequency interval, wherevmax is the maxi-
mum eigenfrequency. In Fig. 6, one can see that the system’s
DOS does not change too much in these two cases with or
without the fixed impurity. As we know, a finite confined
cluster has compressionlike and shearlike modes. The com-
pressional and shearlike properties can be extracted from the
divergence and rotor of the velocity field, respectively. In
this paper, we will associate a single number to the shearlike
and compressionlike character of the different modes by cal-
culating the spatial average of the square of the divergence

¹W ·vW and the rotors¹W 3vWdz of the velocity field, following the
approach of Refs.[22,26,27].

We plotted in Fig. 7 the divergencecdskd and rotorcrskd
as a function of the excitation frequency forN=500 particles
for different values of the charge of the impurity. One can
see from this picture that the system does not change quali-

tatively its overall shearlike and compressionlike character
when an impurity is present even when the impurity charge
is increased.

V. NONLINEAR SCREENING

Screening of the impurity charge is a fundamental prop-
erty of a gas of charge carriers. Such a screening is charac-
terized by the displacement of the carriers when an impurity
is placed in a uniform gas of carriers[28].

We investigate the behavior of the screening length as
function of the charge of the impurity for a large 2D cluster
with N=500 charged particles. In order to quantify the influ-
ence of the impurity charge on the system, we will consider
here an average deviation of the particles’ position before

FIG. 5. The breathing modes for some particular values of the
impurity chargeq for the clusters withN=100 andN=500 particles.
In all cases, the BM has the same frequencyv8=Î6.

FIG. 6. Density of phonon states for clusters withN=500 par-
ticles in the presence of a central impurity for different values of the
impurity chargeq.

FIG. 7. Divergencecdskd (solid dots) and rotor crskd (open
dots) as a function of the excitation frequency forN=500 particles
for different values of the impurity chargeq.
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and after the impurity charge is placed in the system. To do
so, we initially define, for each particle, the displacement due
to the presence of the impurity chargeDi = urW i

after−rW i
beforeu.

The system is divided into 25 concentric rings with a
certain width each containing 20 particles. In every ringi an
average displacement is calculatedD j =oDi /20 where the
summationi sums over the particles in ringj . In this way we
obtain the average deviationD as a function of the distance
in the radial direction from the center of the cluster.

In Fig. 8, we presentD as a function of the distance along
the radial directionr, for different values of the impurity
chargeq in a cluster withN=500 particles. The inset shows
the same plot, but in a logarithmic scale. As can be observed,
the edge particles are much less affected by the impurity
charge than the central particles. The interaction between the
impurity and the particles clearly presents two different re-
gimes, which are related to the value of the impurity charge.
Whenq,1, the quantityD becomes almost zero at the ex-
tremity of the cluster, indicating that the interaction is
strongly screened. On the other hand, whenq.1, the quan-
tity D is considerable larger even at the edge of the cluster.
Notice also that the value ofD at the border of the system
seems to saturate whenq.2.

We fit these deviation curvesDsrd using the function(i.e.,
Yukawa potential formation)

Dr i = ase−ri/l/r id + r0, s6d

where l is the screening length,a a constant andr0 is a
measure of the expansion of the system as a whole. The
results for the screening length as a function of the impurity
chargeq are shown in Fig. 9. There is a clear nonlinear
relationship between the screening lengthl and the impurity
chargeq. The screening length is almost constant forq,0.5,
it rapidly increases with increasing value of the impurity
charge, in the interval 0.5øqø1. For 1.0øqø1.2, the
screening length reaches its maximum value. Whenq.1.2,
the screening parameter decreases slowly with increasing
value of the impurity charge. In the inset of Fig. 9, we notice
that the r0−q dependence exhibits three different regimes

with a r0−q linear dependence forq,0.5 andq.1, and a
transition region for 0.5,q,1.

This nonlinear screening behavior can be understood as
follows. From Fig. 1, we know that for small values ofq till
q,1.2 the particles near the central region have much larger
displacements than the particles near the edge, which are less
influenced by the external impurity charge. In this case the
system is strongly screened. By increasing the impurity
chargeq, the radius of the system grows linearly[see Fig.
10(b)]. However, the displacement of the particles is not ho-
mogeneous in the clusters. The maximum of the screening

FIG. 8. The deviationD of the radial position of the particles as
function of r for different values of the impurity chargeq for a
system consisting ofN=500 particles. The inset showsD in a loga-
rithmic scale.

FIG. 9. The screening length as a function of the impurity
chargeq for clusters consisting ofN=500 particles. The inset shows
theq dependence of the radial displacement at large distances from
the impurity. The dotted lines show the extrapolated small and large
q behavior.

FIG. 10. The energy(a) and radius(b) of the system as a func-
tion of the impurity chargeq. The inset of(a) shows the energy of
the system as a function ofr0.
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length is reached forq=1.0–1.2. In this case the difference
between the displacements of particles around the center and
the edge is largest. At the same time, more defects will ap-
pear in the system. Further increasing the impurity chargeq
leads more and more to a homogenous displacement in all
regions(i.e., a central hole is created by the impurity as is
clearly seen in Fig. 4 and 5), leading to a decrease of the
screening length.

The nonlinear behavior of the screening length is a con-
sequence of the balance among the effect of the impurity
repulsive force, the interaction between the charged particles
of the system, and the circular confinement potential.

We plot the energy and outer radius of the system as a
function of the impurity chargeq in Fig. 10. In the inset of
Fig. 10(a), the energy of the system as a function ofr0 is
shown. Notice that both the energy and the radius of the
system present an almost linear dependence on the impurity
charge. The size of the system linearly increases with the
impurity charge[Fig.10(b)]. Notice that the outer radius and
the uniform incrementr0 [see Eq.(6)] do not have a one-to-
one relation because of the first term on the right hand side
of Eq. (6) which is different from zero at the edge of the
system. From the inset of Fig. 10(a), we notice two regimes
with a different linearE−r0 dependence. The transition re-
gion occurs forr0.0.01 which corresponds toq.1 and this
is just the region wherel is maximal.

VI. CONCLUSIONS

We investigated 2D large clusters consisting of identical
charged classical particles having a single probe impurity.

All interactions are pure Coulombic. The ground-state con-
figuration is obtained through the Monte Carlo simulation
technique. The presence of an impurity charge in the system
does not modify the net topological chargesN−−N+d of the
system, which is always equal to six. In comparison with a
2D cluster without impurity charge, only the breathing mode
remains unchanged if the impurity is located in the center of
the confinement potential. The DOS and the shearlike or
compressionlike character of normal modes of the system do
not change considerably by this impurity as well. A clear
nonlinear relationship between the screening lengthl and
the impurity charge is found. For values of the impurity
charge smaller than the charge of the other particles, the
system has almost a screening strength independent on the
charge of the impurity. For larger values of the impurity
charge, the system exhibits a clear nonlinear screening
length. This result can be explained by the competition be-
tween the different forces active in the system.
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